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Mission requirement based on wavenumber spectrum
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Figure 6. SSH error spectrum requirement (red curve) as a function of wavenumber, given by Egsy(f) =2 +
1.25e — 3f 2. Also shown is the global mean SSH spectrum estimated from the Jason-1 and Jason-2 observations
(thick black line), the lower boundary of 68% and 95% of the spectral values (upper gray dotted line and lower
gray dotted lines, respectively). The intersections of the two dotted lines with the error spectrum at ~ 15 km (68%)
and 30 km (95%) determine the resolving capabilities of the SWOT measurement. The threshold requirement is
also shown (blue), which follows the expression ESEShold(f) = 4 + 1.5e — 3 f~2.



SSH (m)

Rapid changes in SSH at the SWOT scales

Based on model

Trend removed
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Reconstruct SSH using in-situ measurements
(use hydrostatic approximation)

1. Barotropic component measured by bottom pressure
2. Steric component measured by density profile
3. Inverted-Barometer effect by atmospheric pressure
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Instrument performance valuation
To resolve 15-150km wavelengths:
20 locations, 7.5km apart (baseline)

i 1,20 True SSH without
measurement errors

¢;  Steric height

n; — &; Reconstruction error:

Compare the spectrum of n; — ¢; to the
baseline requirement




Four Instruments

UCTD (Under-way CTD)

Fast upper ocean T/S sampling
Compact and portable

Needs ship time

Finite boat speed

PIES (Pressure, Inverted Echo Sounder)
* High frequency sampling
* Low cost
* Long duration, easier for logistics
* Not enough accuracy

Mooring
High frequency sampling
Long duration
Single point measurement
High cost, needs ship time of large-RVs
Glider
* Low cost, easy logistics
* Real-time data transfer
* Semi-Lagrangian

Profile to over 400 meters at 10 knots




CalVal [Cycle: 1 day; duration: 90 days]




PIES, UCTD, Mooring, Glider

PIES does not have enough accuracy

PSD (cm?/cycle/km)

(~5cm uncertainties)

Single-boat-UCTD is too slow to capture

the synoptic SSH

Moorings with enough CTDs are robust

Glider is marginal and needs further test.
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Test glider’s performance in
Monterey Bay

Preliminary results based on the OSSE near the C-site.
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Time series of the upper 500m dynamic height
from a mooring (black) and a station-keeping glider

(green).
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In the frequency space, mooring-
glider discrepancy can be large.



Conclusions

* Moorings provide robust high frequency
measurements and can be used as a reference
for other in-situ platforms.

* An array of gliders can be used as a baseline, but
the robustness of gliders needs further test (Yi’
oresentation).

* Need to explore the benefit of additional
measurements off the baseline-array (Lee’s
oresentation).




Backup figures



. 21 Gliders for 90 days
. 7.5 km spacing
resolving [1/15-1/150]
wavenumber range

. Interpolate glider SSH
to satellite temporal
and spatial grids
(simple radial-based
interpolation in both
space and time).

. 90 daily-snapshots

. Gliders

meet the requirement.
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PIES (Pressure, inverted echo sounder
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travel tlme Of aCOUStIC FIG. 2. A PIES instrument moored near the seafloor at latitude A
and longitude y. Measurements include bottom pressure ( py,,) and
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 Measures bottom pressure.  Baker-Yeboah et al. (2009)
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Convert PIES to SSH np = ag + a1T + aaT? + My
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PIES does not resolve submeoscale
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UCTD (Underway CTD)

CTD Profiling from a moving vessel

* Achieve over 400-500m vertical
profiles while underway at 10kts

* Fast sampling speed
(~20min/profile)

* High quality freefall CTD data

* Compact and portable for
deployment on multiple vessels

https://youtu.be/P4G0O537QVUo

Profile to over 400 meters at 10 knots




An illustration of the influence of high-frequency

motions on the synoptic SSH
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An illustration of the influence of high-frequency
motions on the synoptic SSH measurement
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Wikipedia.com

“"No man ever
steps 1n the
same river
twice, for
1t's not the
same river and
he's not the

44

C ATTNA 7Y AN



Influence of high frequency motions on UTCD
measurements
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Mooring cost

* $1.7M for fabrication of moorings

* S4.6M for instrumentation and deployment/recovery (includes
shipping, costs for personnel on cruise)

* S0.2M (not included above) for shore support, data quality control

* $3.0M for 75 days ship time ($2.6M was our last estimate, but the
mooring tech says 20 moorings cannot fit on a ship, and so it will add
some days to go into port and reload ship)
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Station-keeping gliders (virtual moorings)

Fixed GPS target
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Glider cost

* 90-day operation of one line with 20 station-keeping gliders: S2M

* One 20-glider line: $1.4M
o One glider for 90-day: $70K
v' S50K battery/replacement/insurance (30% of the glider cost @ $150K)
v' S10K shipping & travel
v' S10K labor for 90-day (1 pilot for 3 gliders)

* Additional cost required: $0.6M
o Ship (small/medium) time for deployment/recovery ($200K)
o Project/glider coordination and data management (S200K)
o Glider control/coordination (S200K)

* Major Advantages
o Flexible ship schedule in case of launch delay
o Real-time data access (within hours)
o Engagement with the glider community (US, France, UK, +)



MBARI M1 Mooring for a pilot experiment

The M1 mooring was deployed in 1989 and is maintained by MBARI. The buoy is equipped
with surface and subsurface ocean sensors as well as surface meteorology sensors. The buoy
Is located at 36.75 N, -122.03 W at a depth of 1000m.

Man data ©2017 Gooale

11 CTDs
Im, 10m, 20m, 30m, 40m, 60m, 80m, 100m, 150m, 200m, 300m.

ADCP velocity down to 500 meters.
Other observed variables include Dissolved Oxygen, Fluorescence, pH and CO2.

The surface buoy is equipped with typical meteorological instruments.

Led by Yi Chao, Bruce Haines, Andy Thompson
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Figure 6. The contribution of the upper ocean steric height to the full-depth steric height
defined by the parameter r(z, k) explained in the main text. r(zy, ko)=1 means that the
steric height between the sea surface and z, can explain 100% of the full-depth steric
height at wavenumber ko. Each line represents a function r(z, k) at a certain depth

denoted in the legend.



